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PMR 

Table 3. Hydrogen atom positions in C u ( N O 3 )  2. 2.5 H 2 0  

x y 

H(1) 0.270 0.118 
H(2) 0.269 --0.191 
H(3) -0 .033  0.079 
H(4) -0 .016  0.209 
n(5) 0.423 --0.084 

DMR X-ray 

z x y z x y z 

0.124 0.269 0.124 0.123 0.267 0.11 0.120 
0.100 0.270 --0.187 0.102 0.265 -0 .18  0.099 
0.088 --0.026 0.054 0.089 --0.025 0.05 0-091 
0.175 --0.002 0.203 0.174 0.000 0-20 0.175 
0.248 0.453 --0.079 0.245 0.452 --0.05 0.247 

(c) Hydrogen atom positions 

We have determined the hydrogen atom positions in 
Cu(NO3)2.2.5H20 from the proton-proton vectors 
determined from the PMR study making use of the 
hydrogen-bonding scheme in the crystal (Morosin, 
1970) and a method due to E1 Saffar (1966). We have 
also determined these positions from the orientation of 
the principal axes of the electric field gradient tensor 
found from DMR using a method outlined elsewhere 
(Vizia, Murty, Murty & Nagarajan, 1976). The 
hydrogen positions determined from PMR and DMR 
are shown in Table 3 along with those given by X-rays 
(Morosin, 1970). The agreement can be considered as 
satisfactory. Neutron diffraction is the technique used 
to determine accurately the hydrogen atom positions. 
To our knowledge, for Cu(NOa)2.2.5H20 such a 
determination of the hydrogen positions has not been 
made. Hydrogen positions from X-ray studies are 
relatively less accurate and are not often determined. 
Positions found from the NMR study, while less 
accurate compared to those from a neutron diffraction 
study, are of value, particularly in the absence of the 
latter in the solution of the magnetic structure of 

antiferromagnetic crystalline hydrates. A larger number 
of hydrates appear to have been studied with NMR 
than with neutron diffraction. 

The experiments were done on the Varian spectrom- 
eter at Tata Institute of Fundamental Research, 
Bombay. We thank Professor R. Vijaya Raghavan for 
his kind interest in this work. We also thank Dr G. 
Satyanandam for helpful discussions. The financial 
assistance by the CSIR and NSF (USA, GF 36748) is 
gratefully acknowledged. 
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Abstract 

A number of polymers have been discovered recently for 
which the intensity of some Bragg reflections with d > 
10 A considerably increases with temperature. Thermal 
expansion may be the reason for this anomalous 
phenomena. In sufficiently large molecules electron 
density distribution should change at the molecular 
boundaries upon thermal expansion. In the middle part 
of a molecule, owing to the rigidity of interatomic 
bonds, an increase in temperature will not cause 

0567-7394/82/030304-07501.00 

appreciable changes. As a result, thermal expansion 
may lead to a re-distribution of the electron density and 
an increase in the intensity of Bragg reflections with 
temperature. The scattering from model systems of 
particles was calculated. The calculations show that the 
rate of the growth of the Bragg reflection intensity with 
maximum d increases when a relative size of the central 
part of particle with constant density increases. The 
larger the molecule, the faster the Bragg reflection 
intensity increases with temperature rise. Thermal 
expansion should lead to an increase in the intensity of 
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Bragg reflections with largest d and thermal expansion 
should not affect the intensity of Bragg reflections at all 
if d values are small. The temperature factor of the 
intensity associated with thermal expansion should not 
depend on the Debye-Waller factor. The Debye- 
Waller factor characterizes the effect of thermal 
vibrations on the intensity of Bragg reflections in the 
harmonic approximation, while thermal expansion is 
related to anharmonic effects. 

Introduction 

Temperature changes in the intensity of diffraction 
peaks for all types of crystals are described by the 
Debye-Waller factor (Amoros & Amoros, 1968; Willis 
& Pryor, 1975). As the temperature increases, the 
amplitudes of atomic vibrations rise and, according to 
the Debye-Waller factor, the intensities of Bragg 
reflections have to decrease. The decrease in the 
intensity with temperature is typical of all Bragg 
reflections regardless of their Miller indices. The effect 
of thermal vibrations on the intensity of Bragg 
scattering is weakened with the increasing interplanar 
spacing d. If d > 10/~, the Debye-Waller factor can 
change the intensity of Bragg reflection by no more 
than several per cent when the temperature is raised by 
several hundred degrees. Thus, the intensities of the 
Bragg reflections with large interplanar spacing should 
not actually depend on temperature if only the 
Debye-Waller factor is taken into account. 

A number of substances have been found recently 
which appear to show a significant increase in the 
intensity of some Bragg reflections with increasing 
temperature. The reversible increase in the intensity of 
Bragg reflections was found for reflections with d > 
10/~ in polymers with large molecules. This was 
observed with both crystalline substances (Matsushima 
& Hikichi, 1978) and mesomorphic structures 
(Tsvankin, Levin, Papkov, Zhukov, Zhdanov & An- 
drianov, 1979). In our previous work it was shown that 
the intensity and integral intensity of Bragg reflections 
increased reversibly in a number of polymers with 
mesomorphic structures. The intensity more than 
doubles as the temperature rises from 293 to 673 K. To 
explain this effect, the anomalous behaviour of the 
intensity of Bragg reflections was assumed to result 
from re-distribution of the average electron density in a 
molecule caused by thermal expansion (Tsvankin et al., 
1979). It is known that due to the high rigidity of 
interatomic bonds their length does not change notice- 
ably with temperature, that is the thermal expansion 
reduces merely to the increase in intermolecular 
distances (Kitaigorodsky, 1973). The same situation 
takes place in polymeric crystals where the distances 
between macromolecules increase with the increasing 
temperature. 

For a sufficiently large molecule the electron density 
distribution at its boundaries may change with the 
increasing temperature, while in the middle regions no 
appreciable changes can be expected because of the 
constancy of interatomic distances. Let us define the 
form factor of a molecule as a function characterizing 
the distribution of the intensity of scattering from the 
molecule considered as a body of a certain shape with 
constant electron density. The electron density vanishes 
in the transitional region at the body boundaries. 
Thermal expansion should cause an increase in the 
intermolecular distances and a change in the electron 
density distribution, i.e. a change in the form factor of a 
molecule or macromolecule. In the previous work 
calculations of scattering from a cylindrical model of a 
macromolecule were carried out in order to verify a 
scheme which describes the effect of thermal expansion 
on the intensity of Bragg reflections. The central region 
of the cylinder with a constant electron density was 
distinguished from the outer layer whose dimensions 
and density could vary, depending on temperature and 
thermal expansion. The calculations allowed us to 
obtain, for certain parameters of the model, the same 
increase in the intensity of reflections with increasing 
temperature, as in the experiment (Tsvankin et al., 
1979). 

Explanation of the experimental data obtained leads 
to the problem concerning the temperature factor of the 
intensity of Bragg reflections. The Debye-Waller 
temperature factor cannot explain the considerable 
increase in the reflection intensities with the increasing 
temperature. It is necessary, therefore, to find an 
additional temperature factor of the intensity, proceed- 
ing from the effect of thermal expansion, that could 
explain these phenomena and must be common for both 
molecular and polymeric crystals. 

In the present work diffraction from some of the 
simplest linear one-dimensional models is calculated. 
The calculations permit the estimation of the effect of 
parameters of the electron density distribution on the 
temperature changes in the molecular form factor and 
on the corresponding variation of the intensity of Bragg 
reflections. Proceeding from the calculations, the 
question is discussed, what should be the form of the 
temperature factor in order to account for the effect of 
thermal expansion on the intensity of various Bragg 
reflections. 

The effect of thermal expansion on the intensity of 
diffraction from a linear system of particles 

(a) A linear system of  particles with simple density 
distribution 

Let us consider first a linear system of particles with 
a relatively simple density distribution in the form of a 
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trapezoid. Assume all the particles to be identical with 
their lengths equal to 2L each. The particles are 
distributed along a straight line regularly with a period 
d (Fig. 1). Inside a particle, the central zone with a 
constant density 6 = 1.0 has the length 2(l - 6) (Fig. 
2a). At the boundaries of each particle there are two 
transitional zones where the density decreases linearly 
from p = 1.0 to 0, each zone having the length 26. The 
relationships between the parameters of the scheme in 
Fig. 2(a) are such that 

L=l+cS,  cS<l<L, l > 0 . 5 L .  (1) 

Both the length of t he  particles and the distance 
between them increase, from 2L~ to 2L 2 and from d~ to 
d z, respectively, with the increasing temperature (Figs. 
1, 2). The drop in the electron density at the molecular 
boundaries should become less pronounced with the 
increasing amplitudes of thermal vibrations. The length 
of the boundary regions with variaole density increases: 
32 > ill, the length of the middle regions decreases: l 2 - -  

c52 < I1 - 6 1  since l 2 = l I . 

6 2 61 12 I1 12 6 2 11 61 

L-~2>L1, L2<L1,  L2 L--~2<L--~I-L---~I. (2) 

Let us now calculate the form factor of the particle, F 2, 
and find how F and the intensity of Bragg reflection 
change on the variation of the electron density 

Pt 
1.0 / \ /  \ /  \ 

2L" • ~ d 

Fig. 1. Scheme of distribution of particles along a straight line. 
d = distance between particles. 2L = length of a particle. 

p 

l° 1 
0 . 5 ~ 1 1 - ~  

- - . L I - -  
(a) 

, """ 0"5 l 2 = l l 

~ L 2 ~  
(b) 

Fig. 2. (a) Electron density distribution in a particle before 
expansion. (b) Dotted line represents the electron density distri- 
bution after thermal expansion. 

distribution due to thermal expansion (Fig. 2b). Let us 
denote the X-ray wavelength as 2 and the scattering 
angle as 20. For the density distribution shown in Fig. 
2(a), F may be calculated as follows: 

- 1 + ~  l - - t 5  

26 exp(isx) dx + exp(isx) dx 
- 1 - ~  - 1 + 8  

tf+~l + 6 - - x  + 2-------~ exp(isx) dx. 
1 - 8  

2 sin sl sin s6 
F 6s 2 s i n s l s i n s 6 = 2 l  sl s6 ' (3) 

4zt sin 0 
S - -  - -  

2 " 

Let us consider first the intensity of the Bragg 
reflection corresponding to the period d in the arrange- 
ment of particles along the straight line of Fig. 1. In 
order to keep the analogy with the calculations of 
scattering from the system of cylindrical particles 
(Tsvankin et al., 1979), we will assume that d = 2.1L. 
In this case 

sl - d - 3.0 -L-' sfi = 3.0 -~--. (4) 

In order to find how F changes with the increasing L, 
let us consider F~ as obtained from (3), (4), 

EL _ l ( l -  ~ [ sin s ( l -  ~) sin sl si_ns6] 
- - Z - -  ,. s ( t -6)  - s - - i - s 6  ]" (5) 

It follows from the conditions (1), (2) and from the 
monotonic decrease of the function sin x/x in the 
interval 0 < x < zr that for a reflection satisfying (4) the 
condition F~ > 0 always holds. In other words, the 
temperature changes in the electron density distri- 
bution shown in Fig. 2(b) will always cause the growth 
of F and the increase in the reflection intensity. 

Tables 1 and 2 present the results of a series of 
calculations which show the relationship between the 
electron density distribution in the particle, thermal 
expansion and the Bragg reflection intensity. The 
changes in the reflection intensity owing to thermal 
expansion are determined by the parameter P = Fg/F~. 
F l and F 2 were calculated using (3), (4). F 1 refers to the 
particles before expansion with the length L, at the 
distance dl from one another. F2 refers to the particles 
after expansion with the length L2, distributed with the 
period d 2 (Figs. 1, 2). Besides F 1 and F 2, F 3 was also 
calculated by the same equations (3), (4) for particles 
with length L 1 and initial density distribution, which are 
placed not at a distance dl but at d2 from one another. 
F~ describes the reflection intensity for the case where 
the density distribution inside the particle remains 
constant and only the distances between the particles 
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increase from d 1 t o  d 2 with the changing temperature 
(Fig. 1). Note that F 2 was also calculated for the lattice 
with the period d2, though with the form factor changed 
due to thermal expansion. The parameter P = F~/F 2 
represents the total change in the reflection intensity 
owing both to the increasing distance between the 
particles and to the change in their form factor. On the 

2 2 other hand, the values of Q = F2/F 3 also listed in 
Tables 1, 2 characterize the changes in the reflection 
intensity owing to the change in the form factor only, 
since F 2 and F 3 have been calculated for the same 
period d 2. Comparing P and Q one may distinguish 
between the effect of change in the form factor of 
particles on the reflection intensity and the effect of 
increasing distances between the particles. 

The results of calculations of P and Q are given in 
Table 1 where the electron density distribution par- 
ameter l~/L~ varies, but the thermal expansion is the 
same: L 2 = 1.05L~ and d 2 = 1.05dl. The data of Table 
2 were obtained for the constant value of the parameter 
l~/L 1 = 0.8, but for various thermal expansions L 2 -- 
kL~, d 2 = kd~; where k ranges from 1.012 to 1.15. 

It is seen from Tables 1, 2 that P > 1 for all cases. It 
follows from the results of Table 1 that the increase in 
the intensity is determined by the parameter ll/L~. The 
greater ll/L~ and the less the length of the transitional 
region 2~/L~,  the more efficient is the increase in the 
reflection intensity. The value of P also increases 
proportionally to thermal expansion. As can be seen 
from Table 2, the increase in k at the constant value of 
l~/L~ leads to a considerable increase in P, viz from 
1.06 to 1.88. 

In Tables 1, 2 Q < 1-0, i.e. the changes in the form 
factor of a particle do not increase, but decrease the 
intensity of the Bragg reflection in question. The 
intensity grows (P > 1, Tables 1, 2) in this case not 
because of changes in the form factor of the particle but 
owing to an increase in the distance between the 
particles. The result Q < 1.0 means that the theoretical 
intensity of the Bragg reflections, as calculated neglec- 
ting the changes in the form factor of particle F 2, 
exceeds, at a given temperature T 2, the 'experimental' 
intensity that takes into account these changes: F 2 < 

F 2. In other words, with the above model (Figs. 2a,b) 
the effect of the thermal expansion factor Q is similar to 
the effect of the Debye-Waller temperature factor, 
which also causes a decrease in the Bragg reflection 
intensities. 

(b) A linear system of  particles with more complicated 
electron density distribution 

As another example, let us consider a particle with a 
more complicated electron density distribution (Fig. 3). 

Unlike the previous case (Fig. 2), the boundary 
regions with length fa and constant density p~ < 1-0 
were introduced in the density distribution in Fig. 3. 
Between the regions of constant density two transi- 
tional regions, both 23 long, are located where the 
density decreases linearly from 1 to p~. As a result of 
thermal expansion and increase in the length of the 
particle (from 2L~ to 2L2) the boundary regions change 
so that their density decreases, P2 < Pl. The zones of 
transitional density become longer but the central 
region with p = 1 remains unchanged (Fig. 3). For the 
calculation of the form factor of a particle, F 2, the total 
density distribution in Fig. 3 may be imagined to 
consist of two parts. One of them has the length 2L~ 
and constant density p~. The other part is analogous to 
the distribution discussed above (Fig. 2a), with the 
density 1 - p~. Since the total density distribution in 
Fig. 3 is the sum of these two parts, F may also be 
considered as the sum of two terms, 

Table 2. Calculation of  P and Q with constant value of  
ll/L ~ for  various thermal expansions 

I I /L  1 = 0.8;  cSl/L l = 0.20. 

k ~52/L 2 P Q 

1.012 0.21 1.06 0.98 
1.025 0.22 1.14 0.96 
1.05 0.24 1.28 0.94 
1.075 0.25 1.49 0.92 
1.10 0.27 1.65 0.88 
1.125 0.29 1.77 0.85 
1.15 0.30 1.88 0.82 

Table 1. Calculation of  P and Q with constant thermal 
expansion and various electron density distribution 

parameters 

k= 1.05. 

lt/L 1 3JL 1 t~2/L2 FI P Q 

0.55 0.45 0.47 43.2 1.03 0.85 
0.60 0.40 0.43 42.2 1.04 0.88 
0.70 0.30 0.33 35.6 1.18 0.91 
0.80 0.20 0.24 26.5 1.28 0.94 
0.90 O. lO O. 14 15.8 1.69 0.96 
0.95 0.05 0.09 10.0 2.35 0.96 
1.O0 0.00 0.05 5.0 3.70 1.00 

p 

1.0 2~1 

p~ . . . . . .  f ~ - -  

r- . . . . . .  P2 ....................... ~ . . . . .  1 
L_. L~ __" 

- -  L 2 

Fig. 3. Solid lines represent the initial electron density distribution 
before expansion. Dotted line shows the density distribution after 
thermal expansion. 
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sin sL 1 sin sll sin s61 
F = 2L 1 p~ sL-----~ + 211(1 -- Pl) sl------~ s6----f-" (6) 

F 1 is determined from (6) using the values L l, Pl, ll 
and 6~ (Fig. 3). To calculate F 2 corresponding to the 
particle after expansion, it is necessary to know P2,/2, 
62. These may be found by postulating the conser- 
vation of the 'electron mass' of the particle which is 
equal to the area under the density distribution curve 
(Fig. 3). Assuming the slope of the straight line in the 
transitional region to remain constant upon expansion, 
as in Fig. 3, we obtain: 

1 - -  P l  1 - -  P2 
26---7 - 26----~ - c; rp = L 2 - L,  

e = f ~  + t p - [ ( f l  + tP) 2 -  2p~ ~/C] 1/2 (7) 

12=l  1 + 0 " 5 e ;  P 2 = P l - - c e .  

Since 62 does not affect the 'electron mass' of the 
particle the values for 62 are chosen arbitrarily with the 
condition that 62 < 12 or 62 < L I - 12. The calculation 
of the derivative F [  in its general form by (6), (7) is 

2 2 2 2 very complicated. The ratios P = F z/F~ and Q = F 2/F 3 
for various values of the density distribution param- 
eters were calculated by (6), (7) in order to describe the 
changes in the intensity of the Bragg reflection 
corresponding to the distance d = 2-1L between the 
particles (Table 3). As in the previous case, F 1 
describes the particles of length L 1 before expansion, F 2 
refers to particles of length L 2 and changed density 
distribution, the particles being located at distances d2 
from one another. F 3 was calculated for the particles of 
the initial density distribution with the length L~ 
arranged along a straight line with the period d2. The 
parameter P describes the overall change in the 
reflection intensity upon thermal expansion and Q, 
which is independent of the distance between the 
particles, represents only the effect of the particle form 
factor. As in the previous calculations, L 2 = 1.05L 1. In 
Table 3, computations 1, 2, 3 were done for 6~ = 0 
when there was no transitional density zone. Under 

these conditions, the higher Pl, the greater is the growth 
of the intensity. Note that for cylindrical particles with 
a similar scheme of electron density distribution the 
increase in Pl also leads to a faster rise of the reflection 
intensity, as shown in the previous communication 
(Tsvankin et al., 1979). The closer 62/L2 is to 61/L ~, 
the faster the intensity rises and, vice versa, the greater 
the difference between 62/L2 and 6~/L~, the smaller is 
the value of P. For instance, in computation 4 P = 1.19 
for 62/L2, 6~/L~ = 0.2 and the intensity increases by 
20%. At the same time, P = 0.85 for 6~/L 1 = 0.2 and 
62/L2 = 0.4 (computation 5), i.e. the reflection intensity 
no longer increases, but decreases during thermal 
expansion. 

As far as the parameter l l /L  1 is concerned, its 
increase leads to a quite fast rise of P. This is clear from 
the comparison of computations 1, 8, 13 with 3, 9, 14 
and 4, 12 which have been done for different I/L but 
equal or close values of 61/L 1 and p~. 

In a number of cases (6, 10, 12, 14, 15) Q turned out 
to be more than unity. In these variants the 'experi- 
mental' intensity must be higher than the theoretical 
one calculated for the same lattice neglecting thermal 
expansion (Q > 1, F 2 > F~). Under these conditions, 
the temperature factor due to thermal expansion should 
lead, unlike the Debye-WaUer factor, to an increase in 
the intensity of the Bragg reflection under considera- 
tion. For the rest values of the parameters, calculations 
based on a more complicated scheme (Fig. 3) lead, as 
before, to Q < 1. 

In all the cases, except 14, in order to obtain Q > 1 
one needs to suppose the existence of transitional zones 
6~/L~ :/: 0 as well as a sufficiently large value of P, i.e. 
insignificant difference between 62/L2 and 61/LI. 

(c) Intensity changes in other Bragg reflections 
Up to now we have analysed the temperature 

variation of the first, major Bragg reflection, asso- 
ciated with the regular location of particles (with the 
period d = 2.1L) along a straight line (Fig. 1). To find 

Table 3. Calculations fo r  P and Q 

ll/LI (~I/LI ~2/L2 Pl P Q 
1 0 . 5  0 0 0 1 .08  1 .0  
2 0.5 0 0 0.3 1.16 0.96 
3 0.5 0 0 0.7 1.39 0.84 
4 0.5 0.20 0.202 0.3 1.19 0.97 
5 0.5 0.20 0.40 0.3 0.85 0.69 
6 0.5 0.30 0.38 0.3 1.41 1.16 
7 0.5 0.30 0.43 0.3 1.21 0.96 
8 0.7 0 0 0 1.25 1.0 
9 0.7 0 0 0.7 1.74 0.92 

10 0.7 0.10 0.11 0.3 1.39 1.02 
11 0.7 0.10 0.30 0.3 1.08 0.79 
12 0.7 0.20 0.22 0.3 1.46 1.04 
13 0.85 0 0 0 1.55 1.0 
14 0.85 00 0 0.7 2.53 1.02 
15 0.85 0.10 0.12 0.3 1.67 1.17 

F 2 

15 

10 t B 

5 J A 

1.0 4.0 5"0 6"0 x 
Fig. 4. Form factors of the particle (Fig. 3), as calculated by 

(6), (7), (8). (A) F~(x) - before expansion, (B) F2(x) - after 
expansion. 



D. YA. TSVANKIN 309 

the changes in the intensity of other Bragg reflections, 
let us consider the entire curve F2(x) of the particle 
form factor (x = sL = 2~J_,/d). The entire curve F2(x) 
was calculated by the same equations (6), (7) that were 
used to obtain the data of Table 3. The following values 
of the parameters were chosen: 

l l /L  1 = 0.7; ~ l / t l  - -  0.1; p~ = 0.5; L 2 = 1.05 L I. 
(8) 

The curves F2(x)  and F2(x)  thus obtained are given in 
Fig. 4. As before, F 2 characterizes the particle before 
expansion and F 2 is the form factor of the particle after 
expansion. It can be seen from Fig. 4 that F 2 > F 2 and 
P > 1 for x < 3.8. Thus, if a Bragg reflection lies in this 
region (x < 3.8), its intensity increases upon thermal 
expansion. In the next interval 3.8 < x < 5.6 the curve 
F~ goes higher than the F22 curve and P < 1 (Fig. 4). 
The intensity of Bragg reflections from this interval will 
not increase but decrease on thermal expansion. For 
greater values x > 6 the curves F 2 and F22 are close to 
each other and P _ 1. Let us assume the linear system 
to be a model of the planar hexagonal lattice. Then the 
subsequent Bragg reflections will be located at points 
al = 3.0, a2 = 1.73al = 5.2 and a3 = 2al = 6.0. The 
values of a 1, a 2 and a 3 are given in Fig. 4. For these 
reflections P1 = 1.53, P2 -- 0.82 and P3 = 1.22; that is 
the intensity of the first and third reflections must 
increase and the intensity of the second reflection must 
decrease with increasing temperature. 

, Discussion 
The, main purpose of the above calculations was to 
explain the experimentally observed increase in the 
intensity of Bragg reflections with the increasing 
temperature (Matsushima & Hikichi, 1978; Tsvankin 
et al., 1979). The calculations of scattering were based 
on the natural assumption that for a sufficiently large 
molecule the electron density distribution changes, 
upon thermal expansion, only near its boundaries, but 
remains unchanged in the middle region of the 
molecule. To simulate such changes, two linear 
schemes of the arrangement of particles (molecules) 
were considered (Figs. 2, 3). The calculations based on 
these schemes show (Tables 1, 2, 3) that for most of the 
cases the intensity of Bragg reflections with maximum d 
should increase (P > 1), to some extent, upon thermal 
expansion, the increase being faster the greater the 
parameter l l /L  1 is, that is, the larger the initial size of 
the middle region of constant density is. The latter 
circumstance, obviously, explains the fact that the 
growth of the intensity of Bragg reflections with 
temperature is observed for large molecules. Indeed, the 
size of the transitional region near the boundaries of a 
molecule should be approximately the same for 
different molecules, while the dimensions of the middle 
region of constant density increase proportionally to 
the size of the entire molecule. Therefore, the larger the 

molecule, the greater l l / L  1 m u s t  be and the faster the 
intensity of the corresponding Bragg reflections should 
rise. Besides, only in crystals with sufficiently large 
molecules may one find the reflections with d > 10/~ 
which are slightly affected by the Debye-Waller factor. 
Itshould be recalled that the increase in the intensity is 
to be observed only for Bragg reflections with the 
largest d values, as can be seen from Fig. 4. For smaller 
d values the intensity may either decrease or remain 
constant, depending on the reflection position and on 
the magnitude of thermal expansion. 

The quantities describing changes in the form factors 
of the particles Q are like a temperature factor of the 
reflection intensity which is caused by thermal expan- 
sion. The effect of thermal expansion on the intensity of 
Bragg reflections and, accordingly, the values of Q 
should be independent of the Debye-Waller factor 
which describes the effect of thermal vibrations on the 
intensity of Bragg reflections in the harmonic approxi- 
mation. Thermal expansion and the related effects 
cannot be calculated in the harmonic approximation. 
Anharmonic corrections for the Debye-Waller factor 
were calculated and experimentally found for a number 
of crystals (Willis & Pryor, 1975). Perhaps, the factor 
Q associated with thermal expansion should be such an 
anharmonic correction for molecular and polymeric 
crystals. 

In low-ordered mesomorphic structures the centres 
of molecules form a lattice, while single atoms are 
distributed in a random way. In this case the 
Debye-Waller factor, which is related to individual 
atoms, cannot be calculated at all. For mesomorphic 
structures the total intensity distribution is determined 
by the form factor of a molecule or macro-molecule 
and by its changes under thermal expansion. For 
molecular and polymeric structures with an ordinary 
crystal lattice the Q factor should probably be 
introduced as a correction multiplier to the Debye- 
Waller factor. 

The form factor of a real molecule and, corres- 
pondingly, its Q value may be described if the molecule 
is represented as a continuous body of a definite shape 
with its boundaries determined by intermolecular radii. 
The electron density vanishes within the transitional 
zone at the boundaries of the molecule. A particular 
size of transitional zone should correspond to every 
temperature. This refers to fairly large molecules, in 
which central regions with a constant density can be 
distinguished. Electron density distributions in a 
molecule that correspond to a given temperature and to 
zero temperature can be constructed using the well- 
known formulae of X-ray diffraction analysis (Amoros 
& Amoros, 1968). Comparison of these distributions 
may permit the determination of the changes caused by 
thermal expansion. It is also possible to take a linear 
change in the density, at the boundary of a molecule 
(similar to Fig. 2b) as the first approximation. 
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Abstract 

The image formation of high-voltage, high-resolution 
electron microscopy of ordered alloys has been studied 
on the basis of many-beam dynamical diffraction 
theory. It is revealed that superstructure images are 
observable for a rather thick crystal when nearly 
kinematical relationships hold among certain beams of 
the superlattice reflections; these beams are almost in 
phase and have amplitudes proportional to their struc- 
ture factors. Thickness dependences of the phase differ- 
ences and the scattering amplitudes are calculated for 
the superstructure of D023 type of the gold-based alloys 
AuaX (X = Mg, Zn and Cd). The results are discussed 
in connection with the difference in atomic scattering 
factors of the constituents X. The contrast of the 
superstructure image is discussed in terms of the 
amplitude-phase diagram of the superlattice reflections. 

I. Introduction 

The many-beam imaging technique has been developed 
for high-resolution electron microscopy to investigate 
structures of crystalline and amorphous materials 
(Iijima, 1971). Amelinckx and his colleagues have 
made extensive high-resolution studies on ordered 
alloys using 100 kV electron microscopes [Amelinckx, 
1978-79; Van Tendeloo, 1980]. The many-beam 
imaging technique with the use of a 1 MV electron 
microscope has been applied to the study of super- 
structures of gold-based alloys with Cd, Mn and Mg 
(Hiraga, Hirabayashi & Shindo, 1977; Hiraga, Shindo, 
Hirabayashi, Terasaki & Watanabe, 1980; Terasaki, 
Watanabe, Hiraga, Shindo & Hirabayashi, 1980). In 
these observations, the solute atom positions projected 
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along the incident beam appear as either bright or dark 
dots, and can be identified at the atomic level from 
comparison with the calculations based on dynamical 
diffraction theory. In this respect, high-voltage, high- 
resolution electron microscopy [HVHREM] is a power- 
ful means for the investigation of ordered structures 
(Hirabayashi, 1980; Hirabayashi, Hiraga & Shindo, 
1981). 

High-resolution images which are interpretable in 
terms of ordered atomic arrangements are called 
superstructure images (Hiraga, Shindo & Hirabayashi, 
1981). These images do not reflect a projection of 
crystal potential itself, which may be interpreted in the 
weak-phase-object approximation, but exhibit the atom 
columns of constituent B in A a B alloys projected down 
along the incident beam. The superstructure images are 
contributed dominantly by superlattice reflections rather 
than fundamental reflections. 

We have observed previously the superstructure 
images of Au-Cd alloys of several hundred ~ngstr6rn~ 
thickness. In the successive experiments on such alloys 
as Au-Mg, Au-Mn and Au-Zn, however, we noticed 
that the superstructure images were not always observ- 
able for foils as thick as in the case of the Au-Cd alloy. 
It is worthwhile, therefore, to clarify the theoretical 
background for the formation of superstructure images 
of ordered alloys. In this paper, we first deal with the 
dynamical electron scattering from ordered alloys using 
the multislice formulation (Cowley & Moodie, 1957; 
Cowley, 1975). Then we examine the amplitude of 
superlattice reflections as a function of crystal thick- 
ness for the superstructure of D023 or A13Zr type 
(space group I4/mmm) of AuaX alloys (X = Mg, Zn 
and Cd). Finally we discuss the contrast of super- 
structure images in terms of the amplitude-phase 
diagram of superlattice reflections. 
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